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Abstract

The complex structure and extensive details of solar spectral data, com-
bined with a recent surge in volume, present significant processing challenges.
To address this, we propose a deep learning-based compression technique
using deep autoencoder (DAE) and 1D-convolutional autoencoder (CAE)
models developed with Hinode SOT/SP data. We focused on compressing
Stokes I and V polarization spectra from the quiet Sun, as well as from ac-
tive regions, providing a novel insight into comprehensive spectral analysis
by incorporating spectra from extreme magnetic fields. The results indicate
that the CAE model outperforms the DAE model in reconstructing Stokes
profiles, demonstrating greater robustness and achieving reconstruction er-
rors around the observational noise level. The proposed method has proven
effective in compressing Stokes I and V spectra from both the quiet Sun and
active regions, highlighting its potential for impactful applications in solar
spectral analysis, such as detection of unusual spectral signals.
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1. Introduction

Observational spectral data encapsulates important and varied physical
information with a multi-dimensional structure about astronomical bodies,
necessitating thorough investigation and analysis for a comprehensive under-
standing of space. The increase in the number of observatory instruments in
recent years has led to a substantial growth in the volume of astronomical
data. This surge not only emphasizes the significance of studying such data
but also opens up promising opportunities for leveraging deep learning tech-
niques in the processing and analysis of these vast datasets in the big data
era. One approach to handling such intricate data is the feature extraction
technique, which takes the high-dimensional raw data as input, compresses
it, and reconstructs it to the original size. The most important features of
the original high-dimensional data are extracted in the compressed part, en-
abling them to serve as representatives of the original complex dataset in
subsequent studies. Autoencoders (LeCun, 1987; Kramer, 1991; Goodfellow
et al., 2016) play a powerful role in deep learning-based dimensionality reduc-
tion. Through this compression approach, further studies such as anomaly
detection (Chen et al., 2018; Ryu et al., 2023) and classification (Gogoi and
Begum, 2017; Yeom et al., 2021) of data can also be accomplished.

In the latter part of the 2010s, several studies aimed to develop and
apply compression methods for spectral data, particularly in the context of
galaxy observations. Portillo et al. (2020) utilized variational autoencoder
models to compress galaxy spectra by reducing it to six parameters, offering
more accurate reconstructions than principal component analysis (PCA).
Melchior et al. (2023) introduced an architecture to represent and generate
restframe galaxy spectra from 6 to 10 latent parameters, resulting in accurate
reconstructions with superresolution and reduced noise.

When compared to data in other fields of space science, solar spectral
data stand out in terms of their increased precision and complexity in higher
dimensionality, encompassing details about light polarization, temperature,
and the magnetic field on the solar surface. Therefore, processing this type of
observational data poses a significant challenge. Previous works referring to
the representational dimension of solar polarimetric spectra include, Asensio
Ramos (2006)’s two-part minimum description length principle for approx-
imation model selection, which suggests the optimal eigenvector dimension
for denoising PCA, and Asensio Ramos et al. (2007)’s intrinsic dimensional-
ity estimation method for spectropolarimetry data. López Ariste and Casini
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(2002) implemented a PCA inversion technique using 10 eigenprofiles for a
single Stokes profile. A feature extraction technique by Socas-Navarro (2005)
for simulated solar profiles, based on a multi-layer perceptron, represents one
of the first uses of a neural network for solar spectra, achieving higher ac-
curacy than previous methods such as PCA but requiring significant com-
putational expense. Studies conducted on inversion techniques using deep
learning, include Gafeira et al. (2021)’s convolutional neural network-based
inversion method for Stokes profiles using Hinode (Kosugi et al., 2007) data.
Additionally, Asensio Ramos and Dı́az Baso (2019) introduced convolutional
neural networks that output thermodynamic and magnetic properties from
synthetic Stokes profiles, and achieved a precision comparable to the stan-
dard technique. Regarding deep learning-based solar spectral compression,
Sadykov et al. (2021) used a fully connected autoencoder to reduce one-
dimensional quiet Sun spectra, collected by NASA’s IRIS (De Pontieu et al.,
2014) satellite, from 110 to 4 in size, achieving an average reconstruction
error comparable to the variations in the line continuum.

Upon reviewing previous works, it becomes apparent that compression
techniques for observational solar spectra have primarily been developed for
one-dimensional spectra related to spatial positions in the quiet Sun. How-
ever, active regions cannot be disregarded, as they are associated with a
variety of significant solar phenomena—such as solar flares, solar jets, and
coronal mass ejections—necessitating thorough study as important regions
of interest. This motivates our proposal to develop an efficient compression
method for solar polarization spectra, applicable to both the quiet Sun and
active regions, by utilizing two-dimensional key polarimetric parameters.

We conduct our study using observational solar spectra from Hinode
SOT/SP (Tsuneta et al., 2008; Suematsu et al., 2008; Lites et al., 2013),
a collaborative mission of JAXA, NASA, and ESA. This mission has been
collecting solar spectro-polarimetric data since 2006, constituting an exten-
sive solar spectral database suitable for our work. Our study introduces the
compression of solar spectra through the development of two distinct mod-
els: a deep autoencoder (DAE) and a 1D-convolutional autoencoder (CAE).
Considering the intricate nature of Stokes profiles characterized by high noise
levels, we exclusively focus on Stokes I (total intensity) and Stokes V (circular
polarization) selected from the set of four parameters.

In Section 2, we provide a description of the Hinode data, followed in
Section 3 by a comprehensive explanation of the methods applied in our
study. Sections 4 and 5 present the results and discussion, respectively. In
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Section 6, we conclude the paper with a brief summary.

2. Hinode SOT/SP Data

The Solar Optical Telescope (SOT) on Hinode is equipped with a spectro-
polarimeter (SP) that observes the sun, capturing high-resolution spatial im-
ages and spectro-polarimetric data. Its long-term collection of solar spectral
data over more than 15 years has enabled us to utilize it in the development
of our deep learning-based approach.

Hinode SOT/SP data consists of spatio-temporal spectro-polarimetric in-
formation covering Fe I line pair profiles at 630.15 and 630.25 nm, along with
their nearby continuums. A sampling slit with a width of 0.15” was used
to construct these line pair profiles. The data dimension is 2D-space×1D-
wavelength×1D-polarimetry. The spatial, wavelength, and polarimetry di-
mensions correspond to different fields of views (FoV), 112 wavelength points,
and four Stokes parameters (I, Q, U, and V). The profiles of the Stokes I and
V exhibit distinguishable noise levels at various spatial positions, as shown
in Fig. 1. Notably, in various spatial positions with varying magnetic fields,
Stokes I exhibits a smoother profile than Stokes V.

We selected Hinode/SP Level 1 data (Lites and Ichimoto, 2013) observed
on 2011-09-25 at the timestamp 20:01:04, downloaded from the Commu-
nity Spectropolarimetric Analysis Center (CSAC, 2006) website, based on
its capture near the center of the solar disk containing both sunspots and
quiet Sun regions. The data consists of FITS files of individual scans, each
with a FoV in the y and x directions of 162.304” and 0.295”, respectively.
After combining the FITS file scans along the x direction, we reconstructed
a 2D spectro-polarimetric (SP) image with a size of 162.304” in the y di-
rection and 151.142” in the x direction. To isolate individual spectral data
(each pixel of the FoV) while disregarding spatial information, we trans-
formed the 2D-space into a 1D-pixel dimension, resulting in a new structure
of 1D-pixel×1D-wavelength×1D-polarimetry.

3. Compression Model

3.1. Autoencoder

The autoencoder is recognized as one of the most notable representatives
of neural network-based feature extraction approaches. Its architecture con-
tains encoding and decoding components, each comprised of neural network
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Figure 1: Sample profiles of Stokes parameters corresponding to spatial positions marked in red are
provided for (a) quiet Sun, (b) pore, and (c) sunspot core in the FoV image.

layers working together to efficiently reduce the size of the input through
reconstruction. This encoder-decoder structured dimensionality reduction
technique works effectively on non-linearly connected data. Furthermore,
it contributes to reducing noise within the data (Saura et al., 2023), po-
tentially leading to reconstructed spectra with decreased observational and
instrumental noise. This characteristic positions it as a strong candidate for
model selection. The primary goal of the autoencoder is to reconstruct input
data into an output that closely resembles the input. The encoder decreases
the dimension of the input, while the decoder performs the reverse operation,
increasing the lower dimensional input back to the size of the original input.
This lower-dimensional bottleneck, known as the feature vector, serves as the
compressed representation of the original input.

Both our DAE and CAEmodels maintain a simple architecture. Overviews
of the models are provided in Fig. 2. The DAE comprises a sequence of fully
connected dense layers that decrease in size in the encoder part and increase
in size in the decoder part. The CAE includes 1D-convolutional layers and
max/average pooling layers in the encoder part, with their opposites, trans-
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(b) CAE

Figure 2: Model architectures for (a) DAE and (b) CAE. Blue and orange blocks represent the input and
output (true and reconstructed spectra) of the models, while the encoder, decoder, and bottleneck are
respectively depicted in yellow, pink, and green blocks. At each layer name, one index signifies the shape
of the layer, while two indices denote the number of filters and the kernel size.

pose, and upsampling layers in the decoder part. The encoder and decoder
depths are set to three for each model, as a deeper structure did not yield
advantages. Both dense and convolutional layers were augmented with batch
normalization (BN; Ioffe and Szegedy, 2015) as the accelerator, and an expo-
nential linear unit (ELU; Clevert et al., 2016) was applied as the activation
function. Other parameters were set by default. Considering the 112 wave-
length points and 2 polarimetry parameters, the input and output sizes for
our models are both 224 for DAE, with a shape of (112, 2) for CAE. The
determination and analysis of the bottleneck (feature vector) size are dis-
cussed in Section 4.2. The models were implemented using Keras (Chollet,
2015) with TensorFlow (Abadi et al., 2016) in the Python (Van Rossum
and Drake, 2009), and the development took place on Google Colaboratory
(Bisong, 2019).

3.2. Data preparation

The 2D spatial dimension of the selected data has a shape of (512, 722)
resulting in a total of 369,664 spectral pixels. The dataset was partitioned
into training, validation, and test sets through manual area selection from
the spatial image, ensuring the inclusion of both quiet Sun and active regions
in all three sets. This resulted in a ratio of approximately 76% (270,664 px)
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for training, 12% (45,000 px) for validation, and 12% (45,000 px) for test
sets. Fig. 3 displays the dataset split on the continuum image.

Figure 3: Snapshot of dataset and its partitioning for model training (Versions A to E),
validation, and testing.

In the training set, the pixel count of the quiet Sun is distinctly higher
than that of the sunspot area. Sunspots are uncommon occurrences on the so-
lar surface, leading to their infrequent capture in observational data. Further-
more, the presence of extremely high magnetic fields around and/or within
sunspots results in distinct spectral profiles. In machine learning, the diver-
sity of data in the training set is important, and balancing the incorporation
of different data types during training is essential, as insufficient representa-
tion can inhibit the model’s ability to effectively learn. This limitation may
lead to poor predictions for those specific data types in new datasets. Sim-
ilarly, if the training set contains a significantly smaller number of sunspot
pixels compared to the quiet Sun regions within the spatial image, this could
potentially give rise to a data imbalance issue in the training of the deep learn-
ing model. Since the data is rarely encountered during training, it is likely
to be poorly predicted when it appears in entirely new spectra. To address
this issue, we manually prepared five versions of our training set (A (270,664
px), B (216,064 px), C (168,800 px), D (120,000 px), and E (70,000 px)) by
considering the ratio of sunspot pixels to quiet Sun pixels. This allows us to
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explore the impact of data balance on model performances. Consequently,
we trained each model five times using these five different training sets, while
keeping the validation and test sets the same. Fig. 3 depicts dataset versions
A to E derived from the initial training set. To quantitatively assess the
degree of balance (DoB) for each version of the training set, we calculated
the DoB based on the pixel values of the continuum image using Shannon’s
entropy (Shannon, 1948) method:

DoB =
−
∑k

i=1

ci
n
log

ci
n

log k
, (1)

where n is the total number of pixels, k is the total number of bins along the
pixel value, and ci is the number of pixels in the i-th bin. We set k to 100,
aiming for a representation of the balance in the training sets that is neither
too coarse nor too detailed. The DoB spans from 0 to 1, with a DoB of 0
suggesting unbalanced data and a DoB of 1 indicating balanced data. Fig.
4 shows histograms of the pixel values and their corresponding DoBs.

Figure 4: Degree of balance (DoB) in histograms for the five different training sets.

Utilizing normalized data during the model training enhances both per-
formance and training speed. We applied min-max scaling to normalize the
input profile of Stokes I, as

x′ = (b− a)
x−minx

maxx−minx
+ a, (2)

where x and x′ denote the original and normalized data, respectively, and
[a, b] signifies the range for scaling, which for Stokes I is [0, 1]. For Stokes V,
we used zero-mean scaling, considering its property of zero centered values,
as

x′ =


x

|maxx|
if |maxx| ≥ |minx|

x

|minx|
otherwise

. (3)
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3.3. Training setups

The models were trained for 1,000 epochs with batch sizes of 512, using
the Adam (Kingma and Ba, 2015) optimizer. Attempting smaller batch sizes
extended the training process excessively, often leading to a halt, with no
improvement in performance. We implemented early stopping and learning
rate reduction on plateau optimization techniques to enhance the training
effectiveness and conserve computational time. The patience parameter for
early stopping was set to 100, while for learning rate reduction on plateau,
it was set to 50.

In calculating the reconstruction loss function, we computed the mean
absolute error (MAE) of intensity values independently for the Stokes I and
V parameters at each wavelength point. The total reconstruction loss was
then determined by summing the MAE of Stokes I over the MAE of Stokes
V, as expressed in

Lrecons = MAEI +MAEV . (4)

3.4. Evaluation methods

Stokes I features two clearly recognizable absorption lines in the left and
right halves of its profile, whereas Stokes V displays four lobes, each pair
corresponding to the two absorption line cores. Considering these properties,
we defined four target areas for model evaluation based on the root mean
square deviation (RMSD) at the respective wavelength ranges—left and right
line cores for Stokes I (LLCI , RLCI), and similarly, left and right line cores
for Stokes V (LLCV , RLCV ). The ranges for the left and right line cores are
the same for both parameters: 10–45 and 60–95.

Figure 5: Evaluation areas of Stokes profiles. Colored shaded regions indicate the calculations of RMSD
for left and right cores of both Stokes parameters (LLCI , RLCI , LLCV , RLCV ).

9



4. Results

4.1. Model training

We configured the training process with 1000 epochs and implemented
early stopping, set to activate if there was no reduction in the reconstruction
loss on the validation set for 100 consecutive epochs. The training dynamics
are depicted in the loss-epoch dependency graphs for models trained on set B,
as shown in Fig. 6. While the DAE model exhibited several sudden jumps in
loss during the validation process, the CAE model demonstrates a consistent
and smooth decline in validation loss, mirroring the decrease in training loss.

Figure 6: Loss-epoch graphs of models trained on set B.

4.2. Compression rate analysis

To determine the optimal feature vector size for the compression, we
conducted experiments by training the models with different bottleneck sizes.
The results were analyzed across the four line core areas (LLCI , RLCI ,
LLCV , RLCV ), where we compared them with the observational noise levels
of Stokes I and V (σobs,I , σobs,V ). For each Stokes parameter, σobs is calculated
similarly as

σobs =

∑N
i=1 σ

[0,15]
i

N
, (5)

where N represents the number of spectra in the test set, and σ
[0,15]
i refers

to the standard deviation of the continuum within the wavelength range [0,
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15] of each spectrum. The reference continuum level for Stokes V was con-
sidered to be 0. Fig. 7 shows the dependency between bottleneck size and
RMSD values in the target areas of LLCI , RLCI , LLCV , and RLCV for
the DAE and CAE models. The horizontal axis indicates the number of
nodes in the bottleneck and model types, while the vertical axis displays the
RMSD values. The DAE model achieved the lowest RMSDs, approaching
the observational noise levels at 28 nodes. However, at 56 nodes, the RMSDs
increased, suggesting an overfitting issue. The CAE model also showed a
decreasing RMSD trend up to 28 nodes. Notably, its performance continued
to improve even at 56 and 112 nodes, with RMSDs falling below the ob-
servational noise levels, highlighting the model’s robust performance. Given

Figure 7: Bottleneck-RMSD dependency graphs of the DAE and CAE models.

that 28 nodes in the bottleneck yielded the best possible results for the DAE
model, we proceeded by comparing the performances of the DAE and CAE
models, both configured with 28 parameters, for spectral reconstruction in
the next phase of our analysis.

4.3. Data imbalance analysis

The DAE and CAE models, each having 28 nodes in the bottleneck, were
trained using five versions (A to E) of the training sets for evaluations on a
common test dataset. Fig. 8 illustrates the dependencies between DoB and
RMSD values in the target areas. The horizontal axis aligns the training set
names and model types, while the vertical axis represents the RMSD values.
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The DAE exhibited noticeable fluctuations in results, whereas we observed
minimal differences in the performance of the CAE. Models trained on sets
A, B, and C emerged as top performers, indicating the potential of both
models to mitigate training set imbalances.

Figure 8: Training set-RMSD dependency graphs of the DAE and CAE models.

4.4. Comparison of observed and reconstructed spectra

We compared the original and reconstructed profiles from the models
with the best performances based on chi-squared and RMSD metrics. The
reconstructed profiles are unscaled to original intensity range from the scaled
model output. The observational test profiles with original intensity and the
unscaled reconstructions are then normalized to the quiet Sun continuum
(Ic). Quiet Sun regions selected from the test set, as shown in Fig. 9, are
used to define Ic. Chi-square values (χ

2) are calculated wavelength-wise with
respect to σobs for each profile as

χ2 =
1

d

d∑
i=1

(S ′(λi)− S(λi))
2

σ2
obs

, (6)

where d represents the number of data points in the continuum within the
wavelength range [0, 15], and S(λi) and S ′(λi) refer to the spectral intensity
at i-th wavelength point of observational and reconstructed spectra, respec-
tively. Fig. 10 shows the chi-square histograms of the distribution across
all test data for Stokes I and V, comparing the performances of the DAE

12



Figure 9: Quiet Sun regions, depicted by green rectangles in the test dataset, are selected to
define the continuum intensity of the quiet Sun.

and CAE models. Stokes I histograms resulted in mean values less than 1,
suggesting that the average χ2 values are within the observational noise. For
Stokes V, both models yielded mean values slightly above 1, particularly in
the case of CAE. Similarly, RMSD histograms of Stokes I and V reconstruc-
tions obtained from the DAE and CAE models are depicted in Fig. 11, using
the calculation for each profile as

RMSD =

√∑d
i=1(S

′(λi)− S(λi))
2

d
, (7)

suggesting that all histograms resulted in mean RMSD values comparable to
the observational noise.

To display reconstruction samples, we chose eight different spatial posi-
tions, including the quiet Sun, pores, and both the penumbra and umbra of a
sunspot in the continuum image of the test set. Figure 12 illustrates compar-
isons between the true observational profiles of selected pixel positions and
their respective reconstructions from the DAE and CAE models. Overall,
both models produced smooth and comparable reconstructions that accu-
rately fit the entire profiles, including fluctuations such as Stokes I continu-
ums. Importantly, the reconstructions effectively captured Stokes V shapes
in the quiet Sun despite the initial high noise levels, achieving a good balance
of noise removal without overfitting. In high magnetic field regions like the
sunspot center in (c3), where the Stokes profiles are rarer and more com-
plex, both models faced challenges in accurate reconstruction, with the DAE
model showing particular difficulty.
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Figure 10: Chi-square histograms of observed and reconstructed spectra.

Figure 11: RMSD histograms of observed and reconstructed spectra.
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Figure 12: Samples of observational and reconstructed spectra at various spatial
positions, including (a1–2) quiet Sun, (b1–2) pore, and (c1–4) sunspot penumbra and

umbra, in the test set.
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5. Discussion

To achieve the highest compression rate possible while ensuring robust
performance relative to observational noises, we opted to use 28 nodes in the
bottleneck for both the DAE and CAE models. A larger bottleneck in the
CAE model has the potential to further improve its ability to reconstruct
spectral shapes.

Stokes V profiles typically exhibit higher and less clearly definable noise
levels compared to Stokes I profiles, which prompted concern about their
potential impact on the training process and the risk of undertraining Stokes
I signals. Importantly, we found that optimizing the balance between the
contributions of Stokes I and Stokes V in the reconstruction loss during
training—such as by customizing the loss function with a specific weight
for the Stokes V component—was unnecessary to achieve satisfactory model
performance.

When using different datasets for training, the DAE model exhibited a
higher sensitivity to the DoB in the training set. It faced challenges in
accurately reconstructing spectral profiles that were less presented during
training. In contrast, the CAE models demonstrated greater flexibility in
this regard, consistently delivering stable performances across varying DoB
in the training dataset.

The novel aspect of this work lies in the integrated compression of two
polarimetric parameter profiles, applied not only to the quiet Sun but also to
various positions on the solar surface, including active regions. This approach
enables the analysis of spectral profiles in regions of interest with strong mag-
netic fields, which could potentially drive a range of solar behaviors. The
study is limited by its reliance on only the Stokes I and V parameters from
the four Stokes spectra. To address this, future research should incorporate
the Stokes Q and U parameters, which will provide a more comprehensive
understanding of the solar atmosphere’s structure, physical conditions, and
complex magnetic fields. Additionally, while our current analysis is confined
to data from the disk center, future studies should extend this focus to en-
compass other regions across the solar disc.

Our compression method shows potential for a wide range of applica-
tions, such as detection of anomalous spectra. In this scenario, the model is
training on normal data to ensure a reconstruction error below a specified
threshold. Subsequently, the pre-trained model is applied to reconstructing
data containing previously unseen anomalous signals, resulting in a recon-

16



struction error that exceeds the threshold. Furthermore, unusual events, such
as solar flares, could possibly be detected based on their distinctive spectral
signatures observed in data preceding actual flare occurrences. Additionally,
the suggested approach potentially facilitates the comparison and analysis
of observational and numerical simulation data by leveraging the compact
representations provided by the compression model.

6. Conclusion

In this work, we developed two distinct deep learning model architectures,
a deep autoencoder (DAE) and a 1D-convolutional autoencoder (CAE), specif-
ically tailored for compressing Hinode SOT/SP spectral data, with a primary
focus on the Stokes I and V polarization parameters. Our experiments aimed
to determine the optimal compression rate, evaluate different model architec-
tures, and assess their performance across various balanced training datasets.

The results demonstrate that our compression models effectively reduced
the spectral data dimensionality from 224 to 28 parameters, yielding recon-
struction residuals comparable to the observational noise while also elimi-
nating high noise levels. Notably, the CAE model outperformed the DAE
model, offering greater stability in handling data imbalance and robustly
maintaining the reproducibility of complex profile shapes.

The novelty of our study lies in the compression of two-dimensional obser-
vational solar polarimetric spectra in both the quiet Sun and active regions.
This method provides a more effective analysis technique, significantly broad-
ening its applicability for solar physics studies.

In future work, we aim to develop a universal compression model that
improves detailed spectral analysis by incorporating full Stokes parameters
and can be applied to a broad range of snapshots, extending beyond the disk
center.
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